
www.manaraa.com

Distributed Data Storage Systems with
Opportunistic Repair

Vaneet Aggarwal, Chao Tian, Vinay A. Vaishampayan, and Yih-Farn R. Chen
AT&T Labs-Research, Florham Park, NJ 07932

email: {vaneet, tian, vinay, chen}@research.att.com

Abstract—The reliability of erasure-coded distributed storage
systems, as measured by the mean time to data loss (MTTDL),
depends on the repair bandwidth of the code. Repair-efficient
codes provide reliability values several orders of magnitude
better than conventional erasure codes. Current state of the art
codes fix the number of helper nodes (nodes participating in
repair) a priori. In practice, however, it is desirable to allow
the number of helper nodes to be adaptively determined by
the network traffic conditions. In this work, we propose an
opportunistic repair framework to address this issue. It is shown
that there exists a threshold on the storage overhead, below
which such an opportunistic approach does not lose any efficiency
from the optimal storage-repair-bandwidth tradeoff; i.e. it is
possible to construct a code simultaneously optimal for different
numbers of helper nodes. We further examine the benefits of such
opportunistic codes, and derive the MTTDL improvement for
two repair models: one with limited total repair bandwidth and
the other with limited individual-node repair bandwidth. In both
settings, we show orders of magnitude improvement in MTTDL.
Finally, the proposed framework is examined in a network setting
where a significant improvement in MTTDL is observed.

I. INTRODUCTION

Efficient data storage systems based on erasure codes have
attracted much attention recently, because they are able to
provide reliable data storage at a fraction of the cost of
those based on simple data replication. In such systems, the
data shares stored on a server or disk may be lost, either
due to physical disk drive failures, or due to storage servers
leaving the system in a dynamic setting. To guarantee high
reliability, the lost data shares must be repaired and placed
on other servers. The total amount of data that needs to be
transferred during this repair phase should be minimized, both
to reduce network traffic costs and to reduce repair time.
Dimakis et al. [1] recently proposed a framework to investigate
this tradeoff between the amount of storage at each node (i.e.,
data storage) and the amount of data transfer for repair (i.e.,
repair bandwidth).

In the setting considered in [1], there are n nodes, data can
be recovered from any k nodes, and the lost data share needs to
be regenerated using (certain information obtained from) d ≥
k helper nodes. It was shown that for any fixed d > k, there
exists a natural tradeoff between the total amount of repair
traffic bandwidth and the storage overhead; the two extreme
points are referred to as the minimum storage regenerating
(MSR) point and the the minimum bandwidth regenerating
(MBR) point, respectively. In general, by using d > k helper
nodes, the total repair traffic can be reduced, compared to the

naive (and currently common) practice of using only k helper
nodes.

There are few repair strategies considered in the literature.
Functional repair assumes that the failed block is repaired with
possibly different data than that of the failed node, as long as
the repaired system maintains the code properties. The code
construction for functional repair in [1] uses network coding
[2], and a survey for using network coding in distributed
storage can be found in [3]. Exact repair assumes that the
failed disk is reconstructed exactly. Some of the works for
exact repair can be seen in [4–11, 19]. In this paper, we will
consider functional repair for distributed storage systems.

The number of helper nodes, d, is a design parameter in [1];
however, in practice it may not be desirable to fix d a priori.
As an example, consider the dynamic peer-to-peer distributed
storage environment, where peers are geo-distributed in a wide
area without a centralized control mechanism. The peers may
choose to join and leave the system in a much less controlled
manner than in a data center setting. One example of such
a system is the Space Monkey project [15], and another is
the open source peer-to-peer storage sharing solution built in
Tahoe-LAFS [16]. In such systems, at the time of node repair
it is desirable to utilize as many as possible helper nodes and
achieve the most efficient repair, instead of accessing only a
fixed subset of d available peers. In other words, instead of
designing a code for a single value of d, it would be more
desirable for a code to be universally applicable for multiple
values of d.

In this work, we address this problem and propose an
erasure-coded system based on an opportunistic repair frame-
work, where a single universal code is able to regenerate
the share on the lost node by using any d helper nodes, in
a set D of available choices of d values. We address the
issues of system design and then develop fundamental bounds
on the performance that can be achieved. Specifically, our
distributed storage system consists of a network of storage
nodes, connected together by an IP network. In an effort to
minimize the time to repair a failed node, our system must
determine the bandwidths between the site to be repaired and
all the potential sites that will participate in the repair. This
problem becomes especially important when the underlying
physical network topology is not known and when there is
significant ambient traffic in the network. Thus our system
includes a pre-repair probing step, whose objective is to
determine the available bandwidth constraints, and then select

www.manaraa.com

a repair strategy to minimize the repair time.

We then investigate the tradeoff between storage and the
repair bandwidths (one bandwidth for each d value), and
provide a characterization of the complete tradeoff region
through an analysis technique similar to that used in [1]. A
particularly interesting question arises as to whether there is a
loss for any given d ∈ D by taking this opportunistic approach,
when compared to the case in [1] where the parameter d is
fixed a-priori. We find that there is a critical storage overhead
threshold, below which there is no such loss; above this
threshold, the universality requirement of the code indeed
incurs a loss. In particular, the MSR points for individual
d values are simultaneously achievable in the opportunistic
setting; this phenomenon for the special case of MSR codes
has in fact been observed in an asymptotically optimal code
construction [7].

The reliability of storage systems is usually a foremost
concern to the service provider and the users. Data loss events
can be extremely costly: consider for example the value of data
in systems storing financial or medical records. For this reason,
storage systems must be engineered such that the chance of an
irrecoverable data loss is extremely low, perhaps on the order
of one in 10 million objects per 10,000 years of operation -
as is the case of the Amazon Glacier Storage Service. The
reliability of distributed storage systems is usually measured
using the mean time to data loss (MTTDL) of the system.
In this paper, we analyze the system performance under two
models, the first with limited total bandwidth to all the failed
nodes, and the second with separate per user links for repair.
We find the mean time to data loss for these two cases with
the rate of failures and repairs being constant over time. For
both of these models, we show that the MTTDL is improved
by a multiplicative factor of kn−k

(n−1
k−1)

, when compared to that
without opportunistic repair. This translates to a significant
improvement, and is many orders of magnitude better, even
for lower values of n and k. For n = 51 and k = 30, this
improvement is a multiplicative factor of around 1017, while
even for the parameters chosen in Facebook HDFS (n = 14
and k = 10) [21], this improvement is a factor of around 14.

In practical systems, the bandwidths from all the nodes is
not the same. Hence, there is an additional optimization step:
choose a subset of nodes among the active ones to repair a
failed node. Even with different bandwidths of different links
among the nodes, we find that the opportunistic distributed
storage system helps in repair time and hence the MTTDL
increases by orders of magnitude.

The remainder of the paper is organized as follows. Section
II gives the background and introduces the system model. Sec-
tion III gives our results on functional repair, and the loss for
an opportunistic system as compared to an optimized system
for a single value of d. Section IV gives our results on the mean
time to data loss of an opportunistic distributed storage system.
Section V gives our results when the bandwidths between
different links are random. Section VI concludes the paper.

A1

A2

B1

B2

A1+B1

A2+B2

A2+B1

A1+A2+B2

Fig. 1. A (4,2) MDS binary erasure code ([19]). Each storage node (box)
stores two blocks that are linear binary combinations of the original data
blocks A1, A2, B1 and B2. In this example the total stored size is M = 4
blocks.

II. BACKGROUND AND SYSTEM MODEL

A. Distributed Storage Systems

A distributed storage system consists of multiple storage
nodes that are connected in a network. The issue of code repair
arises when a storage node of the system fails. Consider an
example with n = 4 distributed nodes, which can be recovered
from any k = 2 nodes as shown in Figure 1. If only one node
fails and needs to be repaired, the conventional strategy is to
get all the M = 4 blocks from two active nodes. However, as
shown in [1], fewer than M blocks are sufficient for repairing
a failed node and in fact three blocks suffice in the above
example. For example, to repair the first node, B1, A1 +B1,
and A2+B1 are enough to get A1 and A2. Similarly, to repair
the second node, A2, A2 +B2 and A2 +B1 are sufficient to
get B1 and B2. To repair the third node, A1−A2, −B1 +B2

and A2 +B1 are sufficient to get A1 +B1 and A2 +B2. To
repair the fourth node, A1, B1−B2 and A2+B2 are sufficient
to get A2 +B1 and A1 +A2 +B2.

In this paper, we will consider a mode of repair called
functional repair, in which the failed block may be repaired
with possibly different data than that of the failed node, as long
as the repaired system maintains the code properties (repair
bandwidth and the ability to recover from n − k erasures).
The authors of [1] derive a tradeoff between the amount of
storage at each node and the repair bandwidth for a given
number of nodes n, number of nodes from which the data
should be recovered k and the number of nodes d that can
be accessed for repair. Let each node store α bits, let βd bits
be downloaded from each of the d nodes for repair and let
the total data be M bits. It was shown in [1] that the optimal
storage-repair-bandwidth tradeoff, i.e., α vs. βd, satisfies

k−1∑
i=0

min(α, (d− i)βd) ≥ M. (1)

For a given α, the minimum βd satisfying the above is given
as β∗d(α). The codes associated with the two extremes of
this tradeoff are referred to as minimum-storage regenerating
(MSR) and minimum-bandwidth regenerating (MBR) codes.
An MSR code has a minimum storage overhead requirement
per node while an MBR point has the minimum repair
bandwidth.

One particularly important observation in this example code
is as follows: there are two possible choices of the value d,
which is d = 3 (with repair bandwidth from each node as
1) and d = 2 (with repair bandwidth from each node as

www.manaraa.com

1

1´

2

3

4

2

2

h<2

Fig. 2. Example network with less bandwidth from one node.

2). It is natural to ask whether this flexible choice of d is
generally available, and whether this flexibility incurs any loss
of efficiency.

B. Motivation Example in a Simple Network

Consider a file of size M is encoded into n shares, which
are placed on n distinct nodes1. We assume that the n nodes
are connected via a network and that Rij , 1 ≤ i, j ≤ n, i 6= j
represents the bandwidth from node i to node j. In a typical
scenario the rates will obey a set of constraints and these
constraints will have an impact on the time to repair a single
failed node. As an illustration consider the network in Fig. 2,
which shows a failed node (node 1), an (n, k) = (4, 2) MDS
code (such as a Reed-Solomon code), and the link bandwidths
between the helper nodes and the node to be restored (node
1′). Consider two scenarios, the first where d = k = 2, the
second where d = n− 1 = 3. In the first case the repair time
is proportional to M/4 if the helper nodes are nodes 2 and
3. On the other hand if d = 3, then even though we need
to download only M/4 symbols from each helper node, the
bottleneck link is the link from fourth node and thus the repair
time is proportional to M/(4h). If h > 1, it is beneficial to
use d = 3 while if h < 1, it is beneficial to use d = 2. This
example illustrates the situations where the network topology
may be unknown at encoding time, which may be changing
due to link failures, upgrades, or, a network composed of
mobile storage nodes. Clearly there are benefits if the value
of d and the set of helper nodes can be chosen at the time of
repair.

Motivated by this observation, we assume a distributed
storage system with probing, by which the number of nodes
to access for repair can be decided. Using an active probe,
we obtain the bandwidths between any pair of nodes which
can be used to decide the number of nodes to access in order
to repair a failed node. Thus, in practice, the value of d is
not fixed and hence the code design should work for multiple
values of parameter d. We will consider bandwidths between
multiple nodes for choosing the value of d in Section V.

C. Opportunistic Distributed Storage System

Assume that there are n nodes and the total file that we
need to store is of size M, which can be reconstructed from

1We do not distinguish between node and disk from here on.

k nodes. The repair bandwidth is a function of how many
nodes are used for repair. In this setting, we consider what
happens for the region formed by the bandwidth to repair from
multiple valued of nodes accessed, d. We assume that the code
structure should remain the same and should allow for repair
with varying values of d ∈ D = {d1, d2, · · · } such that each
di ≥ k. We denote the storage capacity at each node by α
and the bandwidth from each node as βd when the content is
accessed from d nodes.

Thus, the distributed storage system with opportunistic
repair works for different values of d. An opportunistic code
can take advantage of varying number of failed nodes. For
example, in the n = 4, k = 2 case in Figure 1, we note that
the system can be repaired from d = 2 as well as d = 3 nodes.
So, this code design works for all k ≤ d ≤ n−1. In this paper,
we will find the parameters the codes have to satisfy so that
they work for multiple values of d. It was noted in [7] that
at the MSR point, there is no loss for opportunistic repair in
the sense that at αMSR, the optimal values βd for the MSR
point corresponding to d are simultaneously achievable for all
d ≥ k. This result was further extended in [20] for adaptive
repair at the MSR point where the failed nodes perform a
coordinated repair. In this paper, however, we do not consider
any coordination among the failed nodes. Further, we will
consider the complete tradeoff region formed by the storage
capacity and the repair bandwidths for different values of d.

III. RESULTS ON OPPORTUNISTIC DISTRIBUTED STORAGE
SYSTEM

In this Section, we present the main theoretical results on
opportunistic repair distributed storage systems.

As in storage systems with a fixed number of repair helper
nodes, in opportunistic-repair distributed storage systems,
there is also a fundamental tradeoff between the share size and
the repair bandwidths. For functional repair, this tradeoff can
be completely characterized as given in the following theorem.

Theorem 1. If the value of α and βdj
for all dj ∈ D satisfies

k−1∑
i=0

min(α, min
dj∈D

(dj − i)βdj
) ≥ M, (2)

there exist linear network codes that achieve opportunistic
distributed storage system with the storage per node given by
α and the repair bandwidth from dj nodes given by djβdj

for
any dj ∈ D. Further, if the above condition is not satisfied, it is
information theoretically impossible to achieve opportunistic
distributed storage system with the above properties.

Proof. The proof follows by an extension of the result in [1].
The details can be found in Appendix A.

An important question of practical interest is whether by
taking the opportunistic approach, a loss of storage-repair
efficiency is necessarily incurred. By leveraging Theorem 1,
we can provide an answer to this question, as given in the next
theorem where we let D = {d1, · · · dl} for k ≤ dl < · · · <
d1 < n.

www.manaraa.com

0.2 0.22 0.24 0.26 0.28

0.03

0.04

0.05

0.06

0.07

α

β

β*
9

β*
7

5/3β*
9

Fig. 3. Loss with Opportunistic Repair for n = 10, k = 5, and M = 1. We
consider the set of possible repair values as {7, 9}.

Theorem 2. For a given n, k, M, and α ≥ M
k ,

(α, β∗d1
(α), · · · , β∗dl

(α)) satisfy (2) for |D| > 1 if and only
if either k = 1 or α ≤ αo(k, d1,M) , M(d1−k+2)

k(d1−k+2)−1 .

The proof of this theorem is given in the appendix. This
theorem essentially states that below the critical threshold αo

of the storage share size, there is no loss of optimality by
imposing the opportunistic repair requirement, while above
this threshold, such a loss is indeed necessary. A special case
of practical relevance is given as a corollary next, which
essentially states that there is no loss by requiring the MSR
codes to have the opportunistic repair property.

Corollary 1. MSR points for all values of d are simultaneously
achievable, i.e., (M

k , β
∗
k(M

k), β∗k+1(M
k), · · · , β∗n−1(M

k)) satisfy
(2).

This particular result has been previously observed in [7].
In fact, even for the more stringent exact-repair case where the
failed disk needs to be repaired with exact same copy, the same
result holds asymptotically, using the class of asymptotically
optimal codes constructed in [7].

The next theorem deals with the case when (α, βd1
) is

operating on the optimal (non-opportunistic-repair) storage-
repair-bandwidth tradeoff curve, when α is larger than the
given threshold αo. In this case, a loss of repair bandwidth
is necessary for all the other values of d = d2, d3, . . . , dl, and
the following theorem characterizes this loss precisely.

Theorem 3. For a given n, k, M, and α ≥ M
k ,

(α, β∗d1
(α), d1−k+1

d2−k+1β
∗
d1

(α) · · · , d1−k+1
dl−k+1 β

∗
d1

(α)) satisfies (2).
Further, given that βd1

= β∗d1
(α) in (2), the above point has

the smallest value of possible β’s for the remaining values di,
i > 1.

As an example, we consider n = 10 and k = 5 in Figure
3. We note that without opportunistic repair, the tradeoffs for
d = 7 and d = 9 could be achieved. However, both these

n n-1 n-2 k k-1

nλ (n-1)λ (n-2)λ(k+1)λ kλ

μμμ μ

Fig. 4. The state transition diagram for Chen’s model.

 n n-1 n-2 k k-1

 nλ (n-1)λ (n-2)λ (k+1)λ kλ

 μ
𝑘(𝑛−𝑘)

𝑛−1

 μ

 μ
𝑘(𝑛−𝑘−1)

𝑛−2

 μ
𝑘(𝑛−𝑘−2)

𝑛−3

Fig. 5. The state transition diagram for Chen’s model with opportunistic
repair.

curves are not simultaneously achievable. Till the first linear
segment of the curve with largest d (d = 9 in this case),
the values of β on the two tradeoff curves are simultaneously
achievable. After that, there is a loss. Assuming that we choose
to be on the tradeoff for d = 9, the black dash-dotted curve
in Figure 3 represents the best possible tradeoff for d = 7 and
thus shows an increase with respect to the optimal code that
works for only d = 7.

IV. MEAN TIME TO DATA LOSS

In this Section, we will consider the improvement in mean
time to data loss due to opportunistic repair. We will consider
two models which are widely studied in the literature, and
consider the impact of opportunistic repair on these systems.
The rate at which individual components (hard drives, tapes,
etc.) fail is denoted by λ while the rate at which those com-
ponents are repaired is µ. Alternatively, these two rates might
instead be expressed as times: Mean- Time-To-Failure (MTTF)
and Mean-Time-To-Repair (MTTR) respectively. When λ
and µ are constant over time, i.e. exponentially distributed,
MTTF = 1/λ and MTTR = 1/µ.

The first model is Chen’s model [12]. Chen et al. presented
models for estimating the MTTDL for various RAID configu-
rations, including RAID 0 (no parity), RAID 5 (single parity)
and RAID 6 (dual parity). In this model, failures occur at
a rate equal to the number of operational devices times the
device failure rate, and repairs occur at the device repair rate
regardless of the number of failed devices. Thus, Chen’s model
assumes that the per-device repair rate is inversely proportional
to the number of failed nodes. This happens if there is a
bottleneck for bandwidth to repair all the nodes. The repair
and failure rates for the Chen’s model are shown in Figure 4.

When opportunistic repair at the MSR point is used, the
repair time is smaller if there are more than k nodes in the

www.manaraa.com

n n-1 n-2 k k-1

nλ (n-1)λ (n-2)λ(k+1)λ kλ

3μ2μμ (n-k)μ

Fig. 6. The state transition diagram for Angus’ model.

system. This is because less bandwidth will be needed to repair
the failed nodes and hence the mean time to repair is smaller
if the number of surviving nodes are greater than k. Using the
result in the previous section, the parameters for state transition
are as in Figure 5.

Next, we will characterize the MTTDL for the Chen’s model
with opportunistic repair.

Theorem 4. The MTTDL for Chen’s model with opportunistic
repair is given as

MTDLChen, Opp =

n−k∑
l=0

(n− k − l)!
(n− l)!(n− l − 1)!

n−k−l∑
i=0

(kµ)i

λ−(i+1) ((n− l − i− 1)!)2

(n− l − k − i)!
(3)

Proof. The proof is provided in the Appendix.

We note by the similar proof steps, we also get that the
MTTDL for the original Chen’s model is given as follows.

MTDLChen, Orig =

n−k∑
l=0

1

(n− l)!

n−k−l∑
i=0

µiλ−(i+1)(n−l−i−1)!

(4)
We will now consider these expressions in the limit that

λ << µ. In this regime, the two expressions above are given
as follows

MTDLChen, Opp =
kn−k(
n−1
k−1
) (k − 1)!

n!

µn−k

λn−k+1
(5)

MTDLChen, Orig =
(k − 1)!

n!

µn−k

λn−k+1
(6)

Thus, we see that MTTDL increases by a factor of kn−k

(n−1
k−1)

with opportunistic repair as compared to that without oppor-
tunistic repair.

The second model we consider is Angus’ model [13].
Unlike Chen’s model, Angus’ model assumes that there are
unlimited repairmen. This means that whether 1 device or 100
fail simultaneously, each failed device will be repaired at a
constant rate. The state transition diagram for Angus’ model
is described in Figure 6.

We can also use opportunistic repair for Angus’ model and
hence save bandwidth when there are more surviving nodes.
Using opportunistic repair, the modified state transition is
described in Figure 7. The MTTDL for Angus’ model with
opportunistic repair is given as follows.

 n n-1 n-2 k k-1

 nλ (n-1)λ (n-2)λ (k+1)λ kλ

 μ
𝑘(𝑛−𝑘)

𝑛−1

 (n-k)μ

 2μ
𝑘(𝑛−𝑘−1)

𝑛−2

 3μ
𝑘(𝑛−𝑘−2)

𝑛−3

Fig. 7. The state transition diagram for Angus’ model with Opportunistic
Repair.

Theorem 5. The MTTDL for Angus’ model with opportunistic
repair is given as

MTDLAngus, Opp =

n−k∑
l=0

(n− k − l)!
(n− l)!(n− l − 1)!

n−k−l∑
i=0

(kµ)i

λ−(i+1) ((n− l − i− 1)!)2

(n− l − k − i)!
i! (7)

Since the proof steps are similar to that in the Chen’s model,
the proof is omitted. Further, the MTTDL for the original
Angus’ model is given as follows.

MTDLAngus, Orig

=

n−k∑
l=0

1

(n− l)!

n−k−l∑
i=0

µiλ−(i+1)(n− l − i− 1)!i! (8)

We will now consider these expressions in the limit that
λ << µ. In this regime, the two expressions above are given
as follows

MTDLAngus, Opp =
kn−k(
n−1
k−1
) (k − 1)!

n!

µn−k

λn−k+1
(n− k)!(9)

MTDLAngus, Orig =
(k − 1)!

n!

µn−k

λn−k+1
(n− k)! (10)

Thus, we see that the MTTDL increases by a factor of
kn−k

(n−1
k−1)

with opportunistic repair as compared to that without
opportunistic repair. Also, we note that the MTTDL loss for
Angus’ model is (n− k)! higher than that in Chen’s model.

V. NETWORK SIMULATION

We consider a network with n distributed nodes, an (n, k)
MDS systematic code and consider the case where repair can
be performed from any d nodes, k ≤ d < n nodes. When
any node fails, it pings all the other nodes to determine the
bandwidths from each of the active node and then determines
the helper set, i.e the nodes that will participate in the repair.

We assume that the bandwidth between any two nodes is
given by a maximum of a Gaussian random variable with mean
3 and variance 16 and 1/4. The bandwidth between any pair
of nodes is independent. If we use a larger d to repair (among
the active nodes), we get an advantage in repair time based
on Chen’s model as k(d− k+ 1)/d which makes it beneficial
to use as many nodes as possible to repair. However, in the

www.manaraa.com

6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

R
at

io
 o

f
op

po
rt

un
is

tic
 r

ep
ai

r
tim

e
to

 c
ho

si
ng

 k
 d

is
ks

n

Fig. 8. Average ratio of time taken to repair 1 failed node with opportunistic
repair to the the repair time using k nodes.

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Failed Disks

N
or

m
al

iz
ed

 M
ea

n
tim

e
to

 R
ep

ai
r

a
fa

ile
d

di
sk

Fig. 9. Average of normalized time taken to repair a failed node with
opportunistic repair when multiple nodes have failed. The normalization is
taken such that time taken to repair n− k failed nodes is unit.

case of realistic bandwidth, this rate is multiplied by dth best
bandwidth to the node which is to be repaired since the data
needs to be downloaded from d servers. This rate decreases
with d. Overall repair rate as a function of d is the product
of the two and is given as k(d − k + 1)/dµ times the dth

largest bandwidth. Thus, there is an optimization needed for d
in order to select the value of d to use. Since only a single node
is repaired at a time, we choose the node with the maximum
rate to repair.

We note that in practice, the value of µ may not be constant
and change with time, and that multiple failed disks can be
repaired in parallel. However, in this section, we ignore these
factors, and only consider the value of µ to be constant and
that one disk is repaired at a time.

We first see the mean time to repair when 1 node has failed.
One option is to choose the best k nodes to repair. This serves
as a base-line without opportunistic repair. With opportunistic
repair, we can choose optimal d number of nodes. We see the
average ratio of time to repair for opportunistic repair with the
time to repair from k nodes in Figure 9, where the average is
over 1000 runs for the bandwidths between different nodes.
For a fixed k = 5, Figure 9 gives this ratio for different values
of n. As n increases, the options for using greater than k
nodes increase so that the relative time taken to repair with
opportunistic repair is smaller.

We next consider k = 5 and n = 10. For this system, we
consider the repair time when 1, · · · , 4 nodes fail as compared
to the repair time when 5 nodes fail. We see that smaller is the
number of nodes that fail, smaller is the time taken to repair
a node with opportunistic repair.

10
−3

10
−2

10
−1

10
0

10
5

10
10

10
15

λ

M
ea

n
tim

e
to

 D
at

a
Lo

ss

Modified better bandwidth
Chen Model

Fig. 10. Mean time to Data Loss of the System with Opportunistic Repair,
as compared to Chen’s model.

Finally, we consider the mean time to data loss of the
system with opportunistic repair, taking the link bandwidths
into account. We compare this to Chen’s system where only
k nodes are used for repair even if more are available. We
assume n = 10, k = 5 and µ = 1. We find that even taking
the link bandwidths into account, the mean time to data loss
for the opportunistic system is much higher than in the system
that does not exploit opportunistic repair.

VI. CONCLUSIONS

We describe a distributed erasure coded storage system with
the capability that a failed node can be repaired from a number
of helper nodes d that is not fixed a priori and investigate the
repair bandwidth vs. storage tradeoff for such a system. We
then demonstrate the usefulness of opportunistic repair in the
form of an improvement in the mean time to data loss of
the system and show that the improvement is significant even
when different nodes have random bandwidth links.

In this paper, we only consider functional repair for oppor-
tunistic distributed storage systems. Even though exact repair
codes has been shown to exist asymptotically at the MSR point
[7], general constructions for exact repair are still open. We
have assumed a mesh network to present the benefits of oppor-
tunistic repair, the benefits from other network topologies is
an open problem. In a general network, finding the constraints
on the bandwidth region between different node pairs via a
probing technique is needed to be able to decide the number
of nodes to access in order to repair the failed node.

APPENDIX A
PROOF OF THEOREM 1

The proof follows a similar line as that in [1]. As in [1],
we construct an information flow graph which is a directed
acyclic graph, consisting of three kinds of nodes: a single data
source S, storage nodes xiin, xiout and data collectors DCi. The
single node S corresponds to the source of the original data.

www.manaraa.com

Storage node i in the system is represented by a storage input
node xiin, and a storage output node xiout; these two nodes are
connected by a directed edge xiin → xiout with capacity equal
to the amount of data stored at node i.

Given the dynamic nature of the storage systems that we
consider, the information ow graph also evolves in time. At any
given time, each vertex in the graph is either active or inactive,
depending on whether it is available in the network. At the
initial time, only the source node S is active; it then contacts
an initial set of storage nodes, and connects to their inputs
(xin) with directed edges of innite capacity. From this point
onwards, the original source node S becomes and remains
inactive. At the next time step, the initially chosen storage
nodes become now active; they represent a distributed erasure
code, corresponding to the desired state of the system. If
a new node j joins the system, it can only be connected
with active nodes. If the newcomer j chooses to connect
with active storage node i, then we add a directed edge from
xiout to xjin, with capacity equal to the amount of information
communicated from node i to the newcomer. Finally, a data
collector DC is a node that corresponds to a request to
reconstruct the data. Data collectors connect to subsets of
active nodes through edges with infinite capacity.

An important notion associated with the information flow
graph is that of minimum cuts: A (directed) cut in the graph G
between the source S and a fixed data collector node DC is a
subset C of edges such that, there is no directed path starting
from S to DC that does not have one or more edges in C.
The minimum cut is the cut between S and DC in which the
total sum of the edge capacities is smallest.

Following the approach of [1], it is enough to prove the
following Lemma.

Lemma 1. Consider any (potentially infinite) information
flow graph G, formed by having n initial nodes that connect
directly to the source and obtain α bits, while additional nodes
join the graph by connecting to dj ∈ D existing nodes and
obtaining βdj

bits from each for some dj ∈ D. Any data
collector t that connects to a k-subset of “out-nodes” of G
must satisfy:

mincut(s, t) ≥
k−1∑
i=0

min(α, min
dj∈D

(dj − i)βdj
). (11)

Furthermore, there exists an information flow graph G∗ where
this bound is matched with equality.

Let ei = arg mindj∈D(dj − i)βdj
for i = 0, 1, · · · k − 1.

For the statement that there exist a flow where the bound is
matched with equality, we consider the setup as in Figure 11.
In this graph, there are initially n nodes labeled from 1 to
n. Consider k newcomers labeled as n + 1, · · · , n + k. The
newcomer node n + i connects to nodes n + i − ei−1, · · · ,
n+ i− 1. Consider a data collector t that connects to the last
k nodes, i.e., nodes n+1, · · · , n+k, and a cut (U, Ū) defined
as follows. For each i ∈ {1, · · · , k}, if α ≤ (ei − 1)βei , then
we include xn+i

out in Ū ; otherwise, we include xn+i
out and xn+i

in

in U . We note that this cut (U, Ū) achieves the bound as in
the statement of Lemma with equality.

The proof that every cut should satisfy the bound follows
very similarly to the proof in [1], using the topological sorting
for the graph, and is thus omitted.

APPENDIX B
PROOF OF THEOREM 2

Proof. To prove this result, we start with a subset of D, say
D′ = {e1, e2} for any {e1, e2} ⊆ D with e1 > e2. Since
(α, β∗e1(α),∞) satisfy (2), there is a minimum βe2(α) such
that (α, β∗e1(α), βe2(α)) satisfy (2). We call this minimum
βe2(α) as β̃e2(α). For βe2(α) = β̃e2(α), (2) will be satisfied
with equality since if not, the value of β̃e2(α) is not optimal.

Thus, we have the following equations
k−1∑
i=0

min(α, (e1 − i)β∗e1(α)) = M, (12)

k−1∑
i=0

min(α, (e1 − i)β∗e1(α), (e2 − i)β̃e2(α)) = M, (13)

Since each term inside the summation in the second expres-
sion is at-most that in the first expression, we have

(e2 − i)β̃e2(α) ≥ min(α, (e1 − i)β∗e1(α)), (14)

for all 0 ≤ i ≤ k− 1. Since, β̃e2(α) is the minimum possible
βe2(α) satisfying the above, we have

β̃e2(α) =
k−1
min
i=0

min(α, (e1 − i)β∗e1(α))

e2 − i
(15)

=
k−1
min
i=0

min(
α

e2 − i
,
e1 − i
e2 − i

β∗e1(α)) (16)

Since both the terms in the minimum increase with i, we have
that the minimum of these terms is non-decreasing with i, and
thus

β̃e2(α) = min(
α

e2 − k + 1
,
e1 − k + 1

e2 − k + 1
β∗e1(α)) (17)

Further, we note that α < (e1 − k + 1)β∗e1(α) is not possible
since it violates the optimality of β∗e1(α) and thus, we have

β̃e2(α) =
e1 − k + 1

e2 − k + 1
β∗e1(α) (18)

It now remains to be seen as to when is β̃e2(α) = β∗e2(α).
If β̃e2(α) = β∗e2(α), we have the following

k−1∑
i=0

min(α, (e2 − i)
e1 − k + 1

e2 − k + 1
β∗e1(α)) = M. (19)

Since we know that
∑k−1

i=0 min(α, (e1 − i)β∗e1(α)) = M and
(e2 − i) e1−k+1

e2−k+1 ≥ (e1 − i), we have that

min(α, (e2− i)
e1 − k + 1

e2 − k + 1
β∗e1(α)) = min(α, (e1− i)β∗e1(α)),

(20)

www.manaraa.com

e1

e0

e0

e0

e0

e3

e1

e2

e3

e2

e2

e3

e0

e1-1

e2-2

e3-3

Fig. 11. G∗ used in the proof of lemma.

for all 0 ≤ i ≤ k − 1. Since for i = k − 1, the two sides are
exactly the same and thus the above holds for k = 1. Thus for
k > 1, we need the two sides to be equal for 0 ≤ i ≤ k − 2.
Since for 0 ≤ i < k − 1, e1 − i < (e2 − i) e1−k+1

e2−k+1 , we have
that the above holds if and only if

α ≤ (e1 − k + 2)β∗e1(α). (21)

From the expression of β∗e1(α), we have that this happens
if and only if α ≤ M(e1−k+2)

k(e1−k+2)−1 .

Thus, we see that if α > M(d1−k+2)
k(d1−k+2)−1 ,

(α, β∗d1
(α), · · · , β∗dl

(α)) do not satisfy (2). Further,
if α ≤ M(d1−k+2)

k(d1−k+2)−1 , the same approach shows that
(α, β∗d1

(α), · · · , β∗dl
(α)) satisfies (2).

APPENDIX C
PROOF OF THEOREM 2

Let Pc(t) denote the probability that c nodes are active at
time t. The differential equations corresponding to the change
of state are given by

dPn(t)

dt
= −nλPn(t) +

k(n− k)

n− 1
µPn−1(t) (22)

dPn−c(t)

dt
= (n− c+ 1)λPn−c+1(t)− ((n− c)λ

+
k(n− k − c+ 1)

n− c
µ)Pn−c(t)

+
k(n− k − c)
n− c− 1

µPn−c−1(t)

(for 1 ≤ c ≤ n− k + 1) (23)
dPk(t)

dt
= (k + 1)λPk+1(t)− (kλ+ µ)Pk(t) (24)

dPk−1(t)

dt
= kλPk(t). (25)

Let P (t) =

 Pn(t)
· · ·

Pk−1(t)

.

Solving the differential equations, we have P (t) =
exp(At)P (0), where A is a tri-diagonal matrix with each

column sum as zero, and is given as A =
−nλ k(n−k)

n−1 µ 0 · · · 0 0

nλ −(n− 1)λ− k(n−k)
n−1 µ k(n−k)

n−1 µ · · · · · · 0

· · · · · · · · · · · · 0 0
0 0 0 · · · −kλ− µ 0
0 0 0 · · · kλ 0

 .
(26)

Since the system starts from the state with all nodes being
active, we have P (0) being 1 only in the first element, and
zero elsewhere. The mean time to data loss is given as

MTTDL =

∫ ∞
t=0

n∑
r=k

Pr(t)dt (27)

Note that by Final Value Theorem for Laplace Transform
[22], we have

MTTDL = lim
s→0

[111 · · · 10](sI −A)−1[10 · · · 0]T . (28)

We let B , adj(sI − A), where adj(.) represents adjoint
of the argument, and let Bij be the element corresponding to
ith row and jth column. Then,

MTTDL = lim
s→0

∑n−k+1
r=1 B1r

det(sI −A)
. (29)

We will now give a result that is a key result in evaluation
of the determinant and the adjoints.

Lemma 2. Let M be a l × l tri-diagonal matrix, such that
the rth diagonal element is crλ + brµ, the upper diagonal
element Mr,r+1 = −br+1µ, and the lower diagonal element
Mr+1,r = −crλ. Then, the determinant of matrix M is given
as

det(M) =

l∑
i=0

(b1b2 · · · bl−i)(cl−i+1 · · · cl)µl−iλi (30)

Proof. The result can be shown to hold by induction and thus
the proof is omitted.

www.manaraa.com

When we construct matrix sI − A, we see that there is no
element in the last row or last column except the diagonal
element which is s. Thus, the determinant of sI −A is given
as s times the determinant of the first n− k + 1× n− k + 1
matrix. Further, this is equal to s times the determinant of the
first n − k + 1 × n − k + 1 matrix when s = 0 +o(s). For
s = 0, the first n−k+1×n−k+1 is given in the tri-diagonal
form in Lemma 2 with b1 = 0, cr = (n − r + 1). Thus, we
have

det(sI −A) = sn(n− 1) · · · kλn−k+1 + o(s)

= s
n!

(k − 1)!
λn−k+1 + o(s) (31)

Using similar approach, we see that

B11 = s

n−k∑
i=0

(
k(n− k)

n− 1

k(n− k − 1)

n− 1− 1
· · ·

k(n− k − i+ 1)

n− i

)
((n− i− 1) · · · k)µiλn−k−i + o(s) (32)

= s
(n− k)!

(k − 1)!(n− 1)!

n−k∑
i=0

(kµ)iλn−k−i

((n− i− 1)!)2

(n− k − i)!
+ o(s) (33)

Let Fn , (n−k)!
(k−1)!(n−1)!

∑n−k
i=0 (kµ)iλn−k−i ((n−i−1)!)

2

(n−k−i)! .
Then, B11 = sFn + o(s). Similarly solving other terms, we
have B1(l+1) = s n!

(n−l)!λ
lFn−l + o(s) for l = 0, · · ·n − k.

Thus, the overall mean time to data loss is given as

MTTDL = lim
s→0

∑n−k+2
r=1 B1r

det(sI −A)
(34)

= lim
s→0

∑n−k
l=0 B1(l+1)

s n!
(k−1)!λ

n−k+1 + o(s)
(35)

= lim
s→0

s
∑n−k

l=0
n!

(n−l)!λ
lFn−l + o(s)

s n!
(k−1)!λ

n−k+1 + o(s)
(36)

=

∑n−k
l=0

n!
(n−l)!λ

lFn−l
n!

(k−1)!λ
n−k+1

(37)

Solving this expression gives the result as in the statement of
the Theorem after some manipulations.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright and K. Ramchan-
dran, “Network coding for distributed storage systems,” IEEE Trans.
Information Theory, vol. 56, no. 9, pp. 4539-4551, Sep. 2010.

[2] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. Information Theory, vol. 46, no. 4,
pp. 1204-1216, Jul. 2000.

[3] A. G. Dimakis, K. Ramchandran, Y. Wu, C. Suh, “A survey on network
codes for distributed storage,” Proceedings of the IEEE, vol. 99, no. 3,
pp. 476-489, Mar. 2011.

[4] N. B. Shah, K. V. Rashmi, P. V. Kumar and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and non-achievability of
interior points on the storage-bandwidth tradeoff,” IEEE Transactions
on Information Theory, vol. 58, no. 3, pp. 1837-1852, Mar. 2012.

[5] N. B. Shah, K. V. Rashmi, P. V. Kumar and K. Ramchandran, “Interfer-
ence alignment in regenerating codes for distributed storage: necessity
and code constructions,” IEEE Transactions on Information Theory, vol.
58, no. 4, pp. 2134-2158, Apr. 2012.

[6] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5227-5239, Aug. 2011.

[7] V. Cadambe, S. Jafar, H. Maleki, K. Ramchandran and C. Suh,
“Asymptotic interference alignment for optimal repair of MDS codes
in distributed storage,” IEEE Transactions on Information Theory, pp.
2974-2987, May 2013.

[8] D. S. Papailiopoulos, A. G. Dimakis, and V. Cadambe, “Repair optimal
erasure codes through Hadamard designs,” IEEE Transactions on
Information Theory, pp. 3021-3037, May 2013.

[9] I. Tamo, Z. Wang, and J. Bruck, “MDS array codes with optimal
rebuilding,” in Proceedings 2011 IEEE International Symposium on
Information Theory, St. Petersberg, Russia, Aug. 2011, pp. 1240-1244.

[10] V. R. Cadambe, C. Huang, S. A. Jafar, and J. Li, “Optimal repair of
MDS codes in distributed storage via subspace interference alignment,”
arXiv:1106.1250.

[11] C. Tian, V. Aggarwal, and V. Vaishampayan, “Exact-repair re-
generating codes via layered erasure correction and block designs,”
arXiv:1302.4670.

[12] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D. A. Patterson,
“RAID: high-performance, reliable secondary storage,” Journal of the
ACM Volume 26, Issue 2 (1994), p. 145-185.

[13] J. E. Angus, “On computing MTBF for a k-out-of-n: G repairable
system,” IEEE Transactions on Reliability Volume 37, Number 3 (1988),
p. 312-313.

[14] J. Resch and I. Volvovski, “Reliability models for highly fault-tolerant
storage systems,”

[15] SpaceMonkey project http://www.spacemonkey.com/
[16] Tahoe: the least-authority file system, https://tahoe-lafs.org/trac/

tahoe-lafs
[17] N. Hu, L. Li, Z. M. Mao, P. Steenkiste and J. Wang, “Locating Internet

bottlenecks: algorithms, measurements, and implications,” in Proc. ACM
SIGCOMM, August 2004.

[18] N. Hu and P. Steenkiste, “Exploiting Internet route sharing for large
scale available bandwidth estimation,” in Proc. 5th ACM SIGCOMM
conference on internet measurement, Oct. 2005.

[19] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in raid architectures,” in IEEE
Transactions on Computers, 1995.

[20] A. Kermarrec, G. Straub, and N. Le Scouarnec, “Repairing mul-
tiple failures with coordinated and adaptive regenerating codes,”
arXiv:1102.0204, Feb 2011.

[21] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R.
Vadali, S. Chen, “XORing elephants: novel erasure codes for big data,”
arXiv:1301.3791.

[22] A. D. Poularikas, and S. Seely, “Laplace Transforms.” The Transforms
and Applications Handbook: Second Edition, Boca Raton: CRC Press
LLC, 2000.

